Indices and Laws of Indices
 First Law

When expressions with the same base are multiplied, the indices are added.
$a^{m} \times a^{n}=a^{m+n}$
$2^{3} \times 2^{3}=2^{6}$

Apply first law of indices to each of the following:

$$
\begin{array}{llll}
3^{3} \times 3^{3}= & 5^{2} \times 5^{5}= & 2^{3} \times 2^{3}= & 7^{2} \times 7^{2}= \\
4 \times 4^{7}= & 3^{2} \times 3^{6}= & 6^{3} \times 6^{2}= & 2^{3} \times 2^{5}= \\
7^{3} \times 7^{7}= & 8^{2} \times 8^{4}= & 2^{5} \times 2^{9}= & 6^{7} \times 6^{2}= \\
6^{3} \times 6^{2}= & 3^{2} \times 3^{6}= & 4 \times 4^{7}= & 2^{3} \times 2^{5}= \\
3^{3} \times 3^{3}= & 5^{2} \times 5^{5}= & 2^{3} \times 2^{3}= & 7^{2} \times 7^{2}= \\
7^{7} \times 7^{7}= & 3^{9} \times 3^{3}= & 6^{7} \times 6^{3}= & 2^{3} \times 2^{5}= \\
1^{3} \times 1^{7}= & 8^{2} \times 8^{4}= & 7^{5} \times 7^{9}= & 4^{3} \times 4^{9}= \\
6^{3} \times 6^{2}= & 9^{2} \times 9^{6}= & 4 \times 4^{7}= & 2^{3} \times 2^{5}= \\
5^{5} \times 5^{5}= & 5^{2} \times 5^{5}= & 2^{3} \times 2^{3}= & 5^{2} \times 5^{14}= \\
9^{2} \times 9^{2}= & 8^{2} \times 8^{10}= & 9^{8} \times 9^{9}= & 4^{3} \times 4^{12}= \\
& \text { © Ford and Lord International Pty Ltd }
\end{array}
$$

